Observations on Co-Array Fortran

Robert W. Numrich

Minnesota Supercomputing Institute
University of Minnesota, Minneapolis

v Office of m : : :
& /4 science University of Minnesota
J JEPARTMENT OF ENERGY

Standards and Portability

Co-arrays will be part of Fortran 2008
— Shmem 1991

— F~1991 (Fortran 77) Cray-T3D

— SGI Origin 2000 (19967?) “-ufmm”

— Co-array Fortran 1998 (Fortran 95)

— Cray-T3E (19977) Cray-X1 (-2)
Preprocessors and source-to-source
translators don’t work

Reference compiler doesn’t work

Compiler implementation by more than one
vendor is required.

University of Minnesota

The SPMD Model

- Gather/compute/scatter
+ Bulk Synchronous Protocol
- MacroTasking

- MPI
« Shmem

« Co-Array Fortran

« UPC
* Titanium

University of Minnesota

Latency and Bandwidth

_ow latency machines are easier to program

-High bandwidth machines are harder to
program

— Cyber-205/Cray-1=20ns/12.5ns=1.6

— Long vectors are hard to find

Bandwidth

— 8/t (byte/sec)
— 1/vt (word/clocktick)

Slow machines scale better
— (flops/clocktick)/(words/clocktick)=flops/word

University of Minnesota

What makes programming hard?

Science is hard

Numerical methods are hard

Boundary conditions are complicated and problem specific
Geometries are complicated

Data decomposition is hard, especially if it changes with time
Mapping a logical decomposition to physical hardware is hard
Memory management is hard

Memory race conditions are easy to write, hard to find
Message passing, either one-sided or two-sided, is hard
Coordination/Synchronization is hard

Load balancing is hard

Computational scientists need to learn the tools of their trade.

University of Minnesota

Location, location, location

The default for everything in CAF is local.
No distributed data structures.
Compiler optimizes local code.

Deliberately designed to prevent the compiler form
doing global optimization.

— Dealing with local memory latency is the compiler’s job

— Dealing with remote memory latency is the programmer’s job
You need a map: local-to-global and global-to-local

— Use the map only now and then

— Otherwise everything is local

University of Minnesota

Global Address Space

Hardware load/store instruction for any address in the

machine.

— When | need a word of data, | want to issue one instruction
to get it

— Compilers should be able to schedule loads

— Stores should be free

Minimal cache coherence
— easiest coherence is to have no cache.
— programmable local memory

Don’t program it as a global address space.
— If all addresses are potentially remote, the compiler has lost
— Race conditions and memory consistency are nightmares!

BlueGene with a global load/store would blow every
other machine out of the water.

University of Minnesota
7

What is Co-Array Fortran?

One simple extension to Fortran 95.
All objects are local to a (virtual) image

image: CAF’s name for process, thread, task, rank,
processor, core, cpu, pe, domain, locale or enclave.

Some objects are marked with a co-dimension.

Programmer can point from an object in one image to
an object with the same name in another image
through, and only through, the co-dimension.

All communication is one-sided and explicit.
All synchronization is explicit.

University of Minnesota

What is Co-Array Fortran?

- Co-Array Fortran is a simple parallel extension to

Fortran 90/95.

It uses normal rounded brackets () to point to data in
local memory.

It uses square brackets [| to point to data in remote
memory.

« Syntactic and semantic rules apply separately but
equally to () and [|.

- Co-Array syntax is a logical statement of my problem.

* The runtime system is responsible for mapping it onto
hardware.

University of Minnesota

For Example

real :: y(n),x(n)[+]
y(:) = x()[p]

x(:)[al = y(:)

x(:)[al = x(:) + x(:)[p]

 Memory consistency?
» Blocking, non-blocking?

University of Minnesota
10

One-to-One Execution Model

P q
() x| | x| x(hlal | x() <)
x(n) N RULE xJn)

T

One
Physical
Processor 11

University of Minnesota

Load Balancing

» Over decomposition
— Co-array data structures
— Each image holds many patches
- Many more images than processors

« CAF does not specify how work is done
— Work on local data
— Go get remote data
— Remote procedure invocation: x[p]%method()?

University of Minnesota
12

Many-to-One Execution Model

P q
() x| | x| x(hlal | x() <)
x(n) N RULE xJn)

|

Many
Physical
Processors 13

University of Minnesota

One-to-Many Execution Model

P q
() x| | x| x(hlal | x() <)
x(n) N RULE xJn)

W

One
Physical
Processor 14

University of Minnesota

Many-to-Many Execution Model

P q
() x| | x| x(hlal | x() <)
x(n) N RULE xJn)

W

Many
Physical
Processors 15

University of Minnesota

Hierarchical Memory

real :: x[p,q,*]

vy = X[:,r,s] memory In first level
y=X|[p,:;,;S|] memory in second level
y= X[p,r,:;] memory in third level

University of Minnesota
16

Why Did | Do It This Way?

| can’t write mirror-image code.

It had to be easy to understand and natural for the
Fortran language.

It had to be simple to implement.

It allowed the compiler to concentrate on local code
optimization.

| could write the code | wanted to write not code the
compiler or a library wanted me to write.

All communication is explicitly marked by the syntax.

If what | wrote doesn’t perform well, | can easily
experiment with other ways of doing it.

Memory race conditions happen only when | cause it
to happen explicitly.

University of Minnesota
17

What | Don’t Like About It?

 Synchronization is hard to get right.

— Machines with fast barriers and fast atomic
operations no longer exist

— Will transactions or full-empty bits really work
efficiently on very large machines?

- Data decomposition has to be done manually.
» Work distribution has to be done manually.

University of Minnesota
18

Using “Object-Oriented” Techniques
with Co-Array Fortran

 Fortran 95 is not an object-oriented language.

 But it contains some features that can be
used to emulate object-oriented programming
methods.

— Named derived types are similar to classes
without methods.

— Modules can be used to associate methods
loosely with objects.

— Generic interfaces can be used to overload
procedures based on the named types of the
actual arguments.

University of Minnesota
19

Irregular and Changing Data
Structures

2%ptr

z[p]%optr

20

>

2%ptr

University of Minnesota

For Example .

type(BlockMatrix) :: af:]
type(MatrixMap) :: map

Cca
Cca
Cca
Cca
Cca
Cca

newMatrixMap(n,m,k,l,p,q)
newBlockMatrix(a,map)
luDecomp(a)
writeBlockMatrix(a)
deleteMatrixMap(map)
deleteBlockMatrix(a)

21

University of Minnesota

v o~

LU Decomposition

10—

"

10

Figure 6: Time as a function of the number of processors p — g = for block-cyclic
LU decomposition. The matrix size is 1000 = 1000 with blocks of size 48 x 48,

Time is expressed in dimensionless giga-clock-ticks, vt = 1077,

as measured on
a CRAY-T3E with frequency v — 300MHz. The dotted line represents perfoct
scaling, The curve marked with bullets (o) is code written in Co-Array Fortran

I'he curve marked with tnangles (9) is SCALAPACK code.

University of Minnesota
22

Why Language Extensions?

The language itself need not contain high
levels of abstraction.

The programmer defines objects that fit the
problem.

Runtime system maps them onto hardware.

Compiler evolves as the hardware evolves.
— Lowest latency allowed by the hardware.

— Highest bandwidth allowed by the hardware.

— Data ends up in registers or cache not in memory
— Arbitrary communication patterns

— Communication along multiple channels

niversity of Minnesota
23

Simple Things That Would Improve
My Productivity

» Fast compile time

* Interactive prototyping mode

* Interactive access to the machine

+ Trace back when the program aborts

* Instruction level real-time clock

* Print with node number attached

- Easy graphical display

» Single-processor performance provided by
the compiler

University of Minnesota
24

